Popular Posts

Sunday, July 26, 2009

Do I have to connect all 8 wires of a LAN cable ?

If you are using 100Base-T4 standards - that is you want to use cat 3, 4 or 5 cables ALL 4 PAIRS (8 wires) ARE REQUIRED. If you are using 100Base-TX (category 5 or 5e cables only) or 10Base-T the wires numbered 4 and 5 (one pair) and 7 and 8 (another pair) are not used in normal LAN operation but should still be connected since some equipment may use them for special purposes (we use them for power-over-ethernet in certain applications). They can be used for other functions e.g. telephony see above.

Beware:
You are taking a RISK that in the future some genius may invent a fantastic application for one or more of these pairs and you may have to re-wire. Whether you consider this a high or low risk is a personal decision.

Can I run a LAN and telephones on the same LAN cable. ?

Depends. If you are using 100Base-T4 standards - that is you want to use cat 3, 4 or 5 cables ALL 4 PAIRS (8 wires) ARE REQUIRED. If you are using 100Base-TX (category 5 or 5e cables only) or 10Base-T the wires numbered 4 and 5 (one pair) and 7 and 8 (another pair) are not used in normal LAN operation but should still be connected since some equipment may use them for special purposes (we use them for power-over-ethernet in special applications). The spare pairs can be used for telephony - each pair will carry a single analog line so a cat 5/5e cable can carry 1 LAN (10 or 100 MB) and two telephone lines. However you are taking a RISK that in the future some genius may invent a fantastic application for one or more of these pairs and you may have to re-wire. Whether you consider this a high or low risk is a personal decision.

When wiring an analog telephone line on a LAN cable the following notes may help:

  1. All the LAN cabling MUST be category 5, 5e or higher.
  2. A normal analog phone uses 2 wires or one pair.
  3. If you are installing the cable and there is no EXISTING telephone connection on this cable use either spare PAIR of wires blue/blue-white OR brown/brown-white for each analog line.
  4. If the cable has an EXISTING telephone wiring connection find the other end of the cable and confirm that it is using either the blue/blue-white or brown/brown-white if so proceed as per 3 above, if NOT move the wiring to use either of these spare pairs (failure to do this will leave you with non-standard LAN wiring which will only lead to confusion in the future).

What is category 5 (or Category 5e or Category 6) cabling

Category 5 UTP (Unshielded Twisted Pair) cable is defined by the EIA/TIA for use with 10 and 100 MB LANs (10baseT and 100baseT) as specification number EIA/TIA-568A. Category 5e is a slightly improved specification published as EIA/TIA-568A-A-5 . Category 6 is defined by EIA/TAI-568-B.2-1.

COLOR-CODE STANDARDS

Here are the diagrams:

Note that the TX (transmitter) pins are connected to corresponding RX (receiver) pins, plus to plus and minus to minus. And that you must use a crossover cable to connect units with identical interfaces. If you use a straight-through cable, one of the two units must, in effect, perform the cross-over function.

Two wire color-code standards apply: EIA/TIA 568A and EIA/TIA 568B. The codes are commonly depicted with RJ-45 jacks as follows (the view is from the front of the jacks):

If we apply the 568A color code and show all eight wires, our pin-out looks like this:

Note that pins 4, 5, 7, and 8 and the blue and brown pairs are not used in either standard. Quite contrary to what you may read elsewhere, these pins and wires are not used or required to implement 100BASE-TX duplexing--they are just plain wasted.

However, the actual cables are not physically that simple. In the diagrams, the orange pair of wires are not adjacent. The blue pair is upside-down. The right ends match RJ-45 jacks and the left ends do not. If, for example, we invert the left side of the 568A "straight"-thru cable to match a 568A jack--put one 180° twist in the entire cable from end-to-end--and twist together and rearrange the appropriate pairs, we get the following can-of-worms:

This further emphasizes, I hope, the importance of the word "twist" in making network cables which will work. You cannot use an flat-untwisted telephone cable for a network cable. Furthermore, you must use a pair of twisted wires to connect a set of transmitter pins to their corresponding receiver pins. You cannot use a wire from one pair and another wire from a different pair.

Keeping the above principles in mind, we can simplify the diagram for a 568A straight-thru cable by untwisting the wires, except the 180° twist in the entire cable, and bending the ends upward. Likewise, if we exchange the green and orange pairs in the 568A diagram we will get a simplified diagram for a 568B straight-thru cable. If we cross the green and orange pairs in the 568A diagram we will arrive at a simplified diagram for a crossover cable. All three are shown below.

Hub vs Switch

The price difference between a Switch and a Hub is almost vanishly small these days. Unless budget really is a key issue we would suggest a Switch. They come in all kinds of sizes 4, 5, 8, 16 and 24 ports. some have the ports at the back and leds at the front, others put both at the front.

RJ45 and LEDS at front

RJ45 at Rear LEDS at front

The general specification - irrespective of whether its a switch or hub - is:

  1. Minimum number of ports equal to the most systems you can think of connecting plus some (say 2) ('cos you are going to change your mind!)
  2. 10/100 Mbit/s auto sensing
  3. LINK LED for each port
  4. 10/100 LED for each port

They typically come with lots of other features e.g. Full/Half Duplex, managed or unmanaged - your budget will figure out what else you want or can afford.

Shielded Twisted Pair

Shielded Twisted Pair (STP) comes in a variety of formats. It is typically used in three applications:

  1. Where there is significant EMI in the environment such as caused by high-powered electric motors (elevator shafts), flourescent lighting etc. Additionally where there is significant Alien Crosstalk (ANEXT) such as in very high speed (gigabit and 10gb) LANs. In this case the ethernet signals in the cable are protected against external interference from either adjacent pairs or the environment.

  2. Where there is extremely sensitive electrical/electronic equipment in the surrounding environment or where security requirements demand elimination of eavesdropping possibilities from radiated LAN signals (TEMPEST). In this case the ethernet signals in the cable are contained and prevented from polluting, or escaping into, the external environment.

  3. Where maximum performance - either speed or distance - is required. As Ethernet speeds continue to increase either fiber or Shielded Twisted Pair is becoming increasingly common, for instance, to reach 100m distances at 10Gb speeds on copper will require shielded cable (limited to 55m for UTP).

Shielded cable comes in three broad types with a confusing range of terminology:

  1. Where there is a single foil (FTP - Foil Twisted Pair) or braided (ScTP - Screened Twisted Pair) shield inside the jacket covering all four pairs.

  2. Where there is a foil shield covering each pair. This is frequently refered to as PiMF (Pairs in Metal Foil) and is designed primarily to eliminate Alien Cross-talk (ANEXT) from adjacent pairs.

  3. Where there is a foil shield covering each pair and a (Foil or Braided) shield covering the whaoe cable. This is frequently refered to as SSTP (Double Shield Twisted Pair) or even PiMF - since many manufacturers also add a jacket shield to foil covered pair cables.

In almost all cases there is a single ground wire (called a drain) which allows for connection to secondary grounding sources.

The diagram below illustrates the differences:

Shielded Twisted Pair

Notes:

  1. Shielded cable of any variety has a greater diameter than UTP and will therefore occupy more space in cable ducting and raceways.

  2. Connecting shielded cable is more complex and time consuming - but not execessively so - than conventional UTP. Manufacturers specifications vary enormously, expecially with respect to grounding, and should be followed closely.

  3. In shielded cable installations the jacks and receptacles are typically made of metal and the cable shield (foil or braid) is connected electrically to the connector and thence through the receptable to a suitable ground.

  4. Foil covered pairs are typically not connected to ground and thus provide only alien crosstalk immunity from adjacent pairs.

  5. Manufacturers specifications and measurements suggest that shielded cables do NOT create antenna effects - indeed experiments show that UTP creates a substantially greater antenna effect (~40db) over correctly grounded shielded cables.

  6. Even ungrounded shielded cables provide better performance (by ~20db) than conventional unshielded twisted pair (UTP).

  7. The drain wire provides a secondary or auxiliary ground method where metallic path grounding is provided by the connectors and, as such, is optional. In cases where metal connectors are not being used the drain wire may be used as the primary grounding method and needs to be routed independantly to a suitable ground.

RJ45 Connections - Some Basic Hints

  1. The RJ45 connector is the critical connection - always use the highest quality connectors you can afford. The most common cause of connection faults are bad connectors.

    There are different connectors for stranded and solid cable and manufacturers do not always do a good job at differentiating them. Spend the time to make sure you have the right connector type. If you use the wrong type of connector the cable may or may not work initially but it will almost certainly fail very quickly.

  2. Make and test practice cables until you get it right every time - especially before you destroy a cable you just spend 2 hours fitting.
  3. When cutting the exterior cover of the cable be very careful not to cut the insulation cover of the conductors since this can cause shorts - bottom line: the cable won't work.
  4. Expose a maximum of 1 inch of individual conductors when preparing the cable for connection.
  5. Line up all the conductors according to the wiring standard you are using.
  6. Measure the cable and trim the conductor ends so they are are all the same length and no individual conductor wire is visible outside the plastic cover of the RJ45 connector.
  7. Carefully slide the prepared cable into the RJ45 connector making sure the end of the conductors reaches the end of the RJ45 connector.
  8. Using the crimp tool make the connection using one firm squeeze operation.
  9. Test the cable before fitting if possible.

RJ45 Male Connector Pin Numbering

RJ45 Male Connector

rj45

1000base-T Gigabit Ethernet

1000base-T is the copper based version of the gigabit Ethernet standard defined by 802.3ab which, since it is over 6 months old, is available free of charge from the enlightened IEEE. Great work. In passing, if you want to see sophistry raised to an art form read the EIA's justification for charging for their specifications. (Note: The original EIA statement is unfortunately no longer avilable on-line. This is a great loss to both the development of the English language in general, and comedy writing in particular.) The following notes apply to the 1000base-T spec:

  1. The standard defines auto-negotiation of speed between 10, 100 and 1000 Mbit/s so the speed will fall to the maximum supported by both ends - ensuring inter-working with existing installations.

  2. The cable specification base-line is ANSI/TIA/EIA-568-A-1995 (which you have to pay for). This means that if you know your cat5 cable was manufactured to this standard (there was a lower spec 1991 version of this specification) then it will support Gigabit Ethernet. Cat5 cable manufactured to the old specification may work or it may not - you need to run some tests. Cat5e and cat6 being higher spec cables will clearly support Gigabit Ethernet.

  3. Maximum runs are the standard 100m (~300ft).

  4. Gigabit Ethernet uses all 4 pairs (8 conductors). The transmission scheme is radically different (PAM-5 a 5 level amplitude modulation scheme) and each conductor is used for send and receive.

  5. Crossed Gigabit Ethernet cables must cross all 4 pairs.

100base-T Crossed cable (PC to PC or HUB to HUB)

Crossed cables are used to connect PCs to one other PC or to connect a HUB to a HUB. Crossed cable are sometimes called Crossover, Patch or Jumper cables. If your connection is PC to HUB you MUST use a Straight cable.

The following description shows the wiring at both ends (male RJ45 connectors) of the crossed cable. Note: The diagrams below shows crossing of all 4 pairs and allows for the use of cat3/4 cables with 100m LANs (100base-T4). Pairs 4,5 and 7,8 do not NEED to be crossed in 100base-TX wiring. See notes below.

crossed connection

We use RED for crossed cables (or more commonly now a red heat-shrink collar at each end).

NOTES:

  1. All our crossed wiring is now done to the 100base-T4 spec (uses all 4 pairs, 8 conductors) which you can use with 10base-T networks - but NOT necessarily the other way around.
  2. Many commercial 100m LAN cables seem not to cross pairs 4,5 and 7,8. If there is no cat3/4 wiring in the network this perfectly acceptable.
  3. Gigabit Ethernet uses all 4 pairs so requires the full 4 pair (8 conductor) cross configuration (shown above).
  4. If you are using Power-over-Ethernet (802.3af) then Mode A or Alternative A uses pairs 1,2 and 3,6 for both signals and power. Mode B or alternative B uses 4,5 and 7,8 to carry power. In all cases the spec calls for polarity insensitive implementation (using a diode bridge) and therefore crossing or not crossing pairs 4,5 and 7,8 will have no effect.

100base-T Straight Cable (PC to HUB/SWITCH)

Straight cables are used to connect PCs or other equipment to a HUB or Switch. If your connection is PC to PC or HUB to HUB you MUST use a Crossed cable.

The following cable description is for the wiring of BOTH ends (RJ45 Male connectors) with your category 5 wiring colors (TIA/EIA 568A or 568B though the example uses 568B colors).

Pin No. conductor color Name
1 white and orange TX_D1+
2 orange TX_D1-
3 white and green RX_D2+
4 blue BI_D3+ **
5 white and blue BI_D3- **
6 green RX_D2-
7 white and brown BI_D4+ **
8 brown BI_D4- **

We use BLUE for 100baseT straight cables.

NOTES:

  1. Wires marked ** are ABSOLUTELY NECESSARY for 100Base-T4 networks - used when any combination of category 3/4/5 cables are present, when using 1000base-T (GigE) and MAY be required for Power-over-Ethernet (PoE) - see below.

  2. Wires marked ** are not essential for 100Base-TX (using cat 5/5e ONLY cables) and CAN be used for other purposes, for example, telephony but, and our LAN plus Telephony article before you wire your entire neighbourhood for surround sound.

  3. The Power-over-Ethernet spec (802.3af) allows three schemes where power may be supplied. Two of these schemes use pairs 4,5 and 7,8 (marked ** in above table) for power (called Midspan PSE and Alternative B or Mode B), one scheme uses ONLY pairs 1,2 and 3,6 (Endpoint PSE, Alternative A or Mode A) for both signals and power. Depending on which scheme you use pairs 4,5 and 7,8 may be required.

  4. Gigabit Ethernet requires all 4 pairs (8 conductors).

  5. All our wiring is now done to the 100base-T4 spec which you can use with 10baseT networks - but NOT the other way around.

10baseT Crossed cable (PC to PC or HUB to HUB)

Crossed cables are used to connect PCs to one other PC or to connect a HUB to a HUB. Crossed cables are sometimes called Crossover, Patch or Jumper cables. If your connection is PC to HUB you MUST use a Straight cable.

The following description shows the wiring at both ends (male RJ45 connectors) of the crossed cable.

One end
RJ45 Male
Other end
RJ45 Male
1 3
2 6
3 1
4 * 5 *
5 * 4 *
6 2
7 * 8 *
8 * 7 *

NOTES:

  1. Items marked * are not necessary for 10M LANs but since you will be moving shortly to 100MB LANs (won't you) you will save yourself a LOT OF TIME finding crappy cable (that you made) that does not work. Instead we suggest you wire to 100BaseT standards.
  2. We use RED for crossed cables (or more commonly now a red heat-shrink collar at each end).
  3. All our crossed wiring is done to the 100base-T4 spec which you can use with 10baseT networks - but NOT always the other way around.

10baseT Straight Cable (PC to HUB/SWITCH)

Straight cables are used to connect PCs or other equipment to a HUB or Switch. If your connection is PC to PC or HUB to HUB you MUST use a Crossed cable.

The following cable description is for the wiring of both ends (RJ45 Male connectors) with the 568B category 5(e) wiring colors you could, of course, use the 568A colour scheme.

Pin No. strand color Name
1 white and orange TX+
2 orange TX-
3 white and green RX+
4 NC *
5 NC *
6 green RX-
7 NC *
8 NC *

NOTE: Items marked * are not necessary for 10M LANs (10base-T) but since you will be moving shortly to 100MB LANs (won't you) you will save yourself a LOT OF TIME finding crappy cable (that you made) that does not work. Instead we suggest you wire to 100Base-T4 standards. After all you gotta stick the ends somewhere man.

We use BLUE for 10base-T straight cables. NOTE: All our wiring is now done to the 100base-T4 spec which you can use with 10base-T networks - but NOT necessarily the other way around.

Category 5(e) (UTP) colour coding table

Category 5(e) (UTP) colour coding table

The following table shows the normal colour coding for category 5 cables (4 pair) based on the two standards supported by TIA/EIA.

These standards apply to the color code used within any SINGLE cable run - BOTH ENDS MUST USE THE SAME STANDARD. However, since they both use the same pinout at the connectors you can mix 568A and 568B cables in any installation.

cat colors

Crossed and Straight cables - when to use them

The following diagram shows the Normal use of Crossed and Straight cables (see also the notes below).


Notes:

1. We show Straight cables as BLUE and Crossed as RED. That is our convention. The cable color can be anything you choose or, more likely, the vendor decides.
2. To avoid the need for Crossed cables many vendors provide UPLINK ports on Hubs or Switches - these are specially designed to allow the use of a STRAIGHT cable when connecting back-to-back Hubs or Switches. Read the manufacturers documentation carefully.
3.

Increasingly vendor hubs (can you still buy them) and switches will auto-detect the connection type and internally switch the connectors so that STRAIGHT cables can be used everywhere.

up icon

Basic Lan Concepts

Basic Notes on Lan:

  1. LAN cables are generically called UTP (Unshielded Twisted Pair) and are identified with a category rating. When installing new cable, unless there is a very good reason not to, you should be using category 5, 5e or 6 UTP which is rated for both 10 and 100mb LAN operation.

  2. UTP comes in two forms SOLID or STRANDED. SOLID refers to the fact that each internal conductor is made up of a single (solid!) wire, STRANDED means that each conductor is made up of multiple smaller wires. Stranded cable (which is typically more expensive) has a smaller 'bend- radius' (you can squeeze the cable round tighter corners with lower loss) and due to its flexibility should be used where you plug and unplug the cable frequently. All other things being equal the performance of both types of cable is the same. In general, solid cable is used for backbone wiring and stranded for PC to wall plug (patch) cables. Beware: Each type of wire, solid or stranded, needs its own connector type.

  3. There is NO excuse with all the choice of color cable and other techniques available to-day for not being able to visually spot the difference between at least a straight and a crossed cable before you spend 1 hour fitting the wrong cable into your network. For cheap-skates (which includes us) you can get heat-shrink colour tubing in a slew of colours which you fit on each end of the cable beside the connector to indicate the wiring type and standard instead of using different coloured cables. The advantage of this scheme is that when you change your wiring standard you can just change the sleeve colour - you don't have to rip out the cable. Disadvantage: You have to remember to put the tubing on BEFORE the connector!

  4. You CAN use 100base-TX wiring with a 10base-T network (but not always the other way round). In general ALWAYS use 100baseTX/T4 wiring standards.

  5. If you are using category 5, 5e or 6 wiring EVERYWHERE you can use the 100base-TX standard (this only uses 2 pairs , 4 conductors). Most of the information below assumes you are using category 5, 5e or 6 cables.

  6. If you are using category 3 or 4 cables with 100M LANs ANYWHERE you MUST use the 100Base-T4 standard and this has ADDITIONAL RESTRICTIONS documented throughout (it uses all 4 pairs, 8 conductors). LAN connections/pinouts are defined by IEEE 802.3u.

  7. Maximum LAN cable runs are 100 meters (~300ft).

HOME : SHARE YOUR IDEAS